We use cookies on this site to enhance your user experience. Do You agree?

Read more

Publications

Investigation of how a chiral molecule interacts with a radiofrequency electromagnetic field

P. Garbacz, “The Bloch equation with terms induced by an electric field”, J. Chem. Phys., 2018, https://doi.org/10.1063/1.5008972

P. Garbacz, “Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling”, Mol. Phys., 2018, http://10.1080/00268976.2018.1432904

P. Garbacz, “Chirality-sensitive effects induced by nuclear relaxation in an electric field”, J. Chem. Phys., 2016, https://doi.org/10.1063/1.4971435

P. Garbacz, A.D. Buckingham, “Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling”, J. Chem. Phys., 2016, https://doi.org/10.1063/1.4967934

P. Garbacz, P. Fischer, S. Krämer, “A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)”, J. Chem. Phys., 2016, https://doi.org/10.1063/1.4962285

P. Garbacz, J. Cukras, M. Jaszuński “A theoretical study of potentially observable chirality-sensitive NMR effects in molecules”, Phys. Chem. Chem. Phys., 2015,  https://doi.org/10.1039/C5CP02870A

Ultra-precise determination of NMR parameters from the gas-phase measurements

  • Nuclear magnetic shielding

P. Garbacz, M. Misiak, K. Jackowski, “NMR shielding in helium-3 atoms modified by gaseous nitrogen and oxygen”, Magn. Reson. Chem., 2020, https://doi.org/10.1002/mrc.5030

W. Makulski, “Deuterium isotope effects on 17O nuclear shielding in a single water molecule from NMR gas-phase measurements”, Phys. Chem. Chem. Phys., 2020, https://doi.org/10.1039/D0CP03085F

W. Makulski, K. Jackowski, “1H, 13C and 29Si magnetic shielding in gaseous and liquid tetramethylsilane”, J. Magn. Reson., 2020, https://doi.org/10.1016/j.jmr.2020.106716

P. Garbacz, G. Łach, “Isotope Effects on Nuclear Magnetic Shielding in Molecular Hydrogen”, J. Phys. Chem. A, 2018, http://10.1021/acs.jpca.7b11342

P. Garbacz, K. Jackowski, “NMR shielding of helium-3 in the micropores of zeolites”, Micropor. Mesopor. Mat., 2015, https://doi.org/10.1016/j.micromeso.2014.07.059

P. Garbacz, V.V. Terskikh, M.J. Ferguson, G.M. Bernard, M. Kędziorek, R.E. Wasylishen, “Experimental characterization of the hydride 1H shielding tensors for HIrX2(PR3)2 and HRhCl2(PR3)2: Extremely shielded hydride protons with unusually large magnetic shielding anisotropies”, Phys. Chem. A, 2014, https://doi.org/10.1021/jp411378j

P. Garbacz, K. Jackowski, W. Makulski, R.E. Wasylishen, “Nuclear magnetic shielding for hydrogen in selected isolated molecules”, Phys. Chem. A, 2012, https://doi.org/10.1021/jp309820v

  • Magnetic dipole moment

W. Makulski, P. Garbacz, “Gas-phase 21Ne NMR studies and the nuclear magnetic dipole moment of neon-21″, Magn. Reson. Chem., 2020, https://doi.org/10.1002/mrc.5006

W. Makulski, “Explorations of Magnetic Properties of Noble Gases: The Past, Present, and Future”, Magnetochemistry, 2020, https://doi.org/10.3390/magnetochemistry6040065

A. Antušek, M. Repisky, M. Jaszuński, K. Jackowski, W. Makulski, and M. Misiak, “Nuclear magnetic dipole moment of 209Bi from NMR experiments”, Phys. Rev. A, 2018, https://doi.org/10.1103/PhysRevA.98.052509

P. Garbacz, W. Makulski, “183W nuclear dipole moment determined by gas-phase NMR spectroscopy”, Chem. Phys., 2017, http://10.1016/j.chemphys.2017.10.003

  • Spin-spin coupling

P. Garbacz, M. Chotkowski, Z. Rogulski, M. Jaszuński, “Indirect Spin-Spin Coupling Constants in the Hydrogen Isotopologues”, J. Phys. Chem. A, 2016, https://doi.org/10.1021/acs.jpca.6b04855

P. Garbacz, “Spin–spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase”, Chem. Phys., 2014, https://doi.org/10.1016/j.chemphys.2014.08.002

P. Garbacz, W. Makulski, M. Jaszuński, “The NMR spin–spin coupling constant 1J(31P,1H) in an isolated PH3 molecule”, Phys. Chem. Chem. Phys., 2104, https://doi.org/10.1039/C4CP02973A